\(\left|\omega\right|_{min}=1\)
\(\left|\omega\right|_{min}=1\)
cho số phức z= a+bi ( a, b thuộc R ) thỏa mãn z+1+2i - (1+i) \(\left|z\right|\)=0 và \(\left|z\right|>1\) tính giá trị P = a+b
Trên mặt phẳng tọa độ, tìm tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện :
a) \(\left|z\right|=1\)
b) \(\left|z\right|\le1\)
c) \(1< \left|z\right|\le2\)
d) \(\left|z\right|=1\) và phần ảo của z bằng 1
Cho số phức z.Tìm giá trị nhỏ nhất và lớn nhất của \(\left|z\right|\).Biết \(\left|z^2+1\right|=4\left|z\right|\)
Cho 2 số phức z và w thỏa |z-5+3i|=3 và |iw +4+2i|=2 . tìm min của P=|3iz + 2w|
cho số phức z có phần thực là số nguyên và z thõa mãn \(_{\left|z\right|-2\overline{z}=-7+3i+z}\)tính modun của số phức w= 1-z+\(^{z_{ }^2}\)
Cho số phức Z thoả mãn (1+2i)z-5= 3i tìm số phức liên hợp z 2/ cho số phức z=a+bi(a, b thuộc R) thoả mãn 3z-5z ngan -6+10i=0 .tính a-b
Tìm số phức \(z\), biết :
a) \(\left|z\right|=2\) và \(z\) là số thuần ảo
b) \(\left|z\right|=5\) và phần thực của \(z\) bằng hai lần phần ảo của nó
c) \(z=\overline{z}\)
d) \(z=-\overline{z}\)
Tìm nghiệm phức \(\frac{\left|z\right|^4}{z^2}\)+\(\overline{z}\)=\(\frac{-200}{1-7i}\)
Tính \(\left|z\right|\) với :
a) \(z=-2+i\sqrt{3}\)
b) \(z=\sqrt{2}-3i\)
c) \(z=-5\)
d) \(z=i\sqrt{3}\)