Bài 1: Số phức

TD

Cho số phức z.Tìm giá trị nhỏ nhất và lớn nhất của \(\left|z\right|\).Biết \(\left|z^2+1\right|=4\left|z\right|\)

AH
4 tháng 7 2017 lúc 18:30

Lời giải:

Ta có:

\(|z^2+1|=4|z|\Leftrightarrow \frac{|z^2+1|^2}{|z|^2}=16\)

\(\Leftrightarrow 16=\frac{(z^2+1)(\overline{z^2}+1)}{|z|^2}=\frac{|z|^4+z^2+\overline{z^2}+1}{|z|^2}\)

\(\Leftrightarrow 16=\frac{|z|^4+(z+\overline{z})^2-2|z|^2+1}{|z|^2}\geq \frac{|z|^4-2|z|^2+1}{|z|^2}\)

Đặt \(|z|^2=t\Rightarrow 16\geq \frac{t^2-2t+1}{t}\)

\(\Leftrightarrow t^2-18t+1\leq 0\Leftrightarrow 9-4\sqrt{5}\leq t\leq 9+4\sqrt{5}\)

\(\Rightarrow \sqrt{5}-2\leq |z|\leq \sqrt{5}+2\) hay \(|z|_{\min}=\sqrt{5}-2;|z|_{\max}=\sqrt{5}+2\)

Tổng quát: Nếu \(|z+\frac{1}{z}|=k\Rightarrow |z|_{\max}=\frac{\sqrt{k^2+4}+k}{2};|z|_{\min}=\frac{\sqrt{k^2+4}-k}{2}\)

Bình luận (0)

Các câu hỏi tương tự
TD
Xem chi tiết
CN
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
TD
Xem chi tiết
KD
Xem chi tiết
VN
Xem chi tiết
KN
Xem chi tiết