Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

H24

Cho số hữu tỷ x thỏa mãn x^2 + 2x là một số nguyên. Chứng minh x là một số nguyên.

DH
11 tháng 8 2021 lúc 21:44

Với \(x=0\)hiển nhiên đúng. Với \(x\ne0\):

Đặt \(x=\frac{a}{b};\left(\left|a\right|,\left|b\right|\right)=1\).

\(x^2+2x=\frac{a^2}{b^2}+\frac{2a}{b}=\frac{a^2+2ab}{b^2}=\frac{a\left(a+2b\right)}{b^2}\)

mà \(\left(a,b\right)=1\Rightarrow a+2b⋮b^2\Rightarrow a=kb^2-2b,k\inℤ\)

khi đó \(a⋮b\).

Suy ra \(x\)là một số nguyên. 

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
MT
Xem chi tiết
NO
Xem chi tiết
CK
Xem chi tiết
DV
Xem chi tiết
CK
Xem chi tiết
CK
Xem chi tiết
H24
Xem chi tiết