Lời giải:
$S=3^0+3^2+3^4+...+3^{2014}$
$3^2S=3^2+3^4+3^6+...+3^{2016}$
$\Rightarrow 3^2S-S=3^{2016}-3^0$
$\Rightarrow 8S=3^{2016}-1$
$\Rightarrow S=\frac{3^{2016}-1}{8}$
b.
$S=(3^0+3^2+3^4)+(3^6+3^8+3^{10})+....+(3^{2010}+3^{2012}+3^{2014})$
$=(1+3^2+3^4)+3^6(1+3^2+3^4)+...+3^{2010}(1+3^2+3^4)$
$=(1+3^2+3^4)(1+3^6+...+3^{2010})=91(1+3^6+...+3^{2010})$
$=7.13(1+3^6+...+3^{2010})\vdots 7$.