H24

Cho S là tập hợp các số nguyên dương n có dạng n = x2+3y2 , trong đó x, y là các số nguyên. Chứng minh rằng nếu A ϵ S và A là số chẵn thì A chia hết cho 4 và A/4 ϵ S. 

NT
27 tháng 3 2023 lúc 23:29

A thuộc S thì A=x^2+3y^2

Nếu x chia hết cho 2 thì từ N chẵn, ta có y chia hết cho 2 

=>N/4 thuộc S

Nếu x,y lẻ thì x^2-9y^2 đồng dư ra 1-9=0 mod 8

=>x-3y chia hết cho4 hoặc x+3y chia hết cho 4

Nếu x-3y chia hết cho 4 thì A/4=(x-3y/4)^2+3(x+y/4)^2 

=>A/4 thuộc S

Chứng minh tương tự, ta cũng được nếu x+3y chia hết cho 4 thì A/4 cũng thuộc S

=>ĐPCM

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
PA
Xem chi tiết
H24
Xem chi tiết
HN
Xem chi tiết
NT
Xem chi tiết
NN
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
LA
Xem chi tiết