\(S=1.2^0+2.2^1+....+2018.2^{2017}+2019.2^{2018}\)
\(\Rightarrow2S=1.2^1+2.2^2+...+2018.2^{2018}+2019.2^{2019}\)
\(\Rightarrow S-2S=2^0+2^1+2^2+...+2^{2018}-2019.2^{2019}\)
\(\Rightarrow-S=2^0+2^1+...+2^{2018}-2019.2^{2019}\)
\(\Rightarrow-2S=2^1+2^2+...+2^{2019}-2019.2^{2020}\)
\(\Rightarrow-S-\left(-2S\right)=2^0-2020.2^{2019}+2019.2^{2020}\)
\(\Rightarrow S=1-1010.2^{2020}+2019.2^{2020}\)
\(\Rightarrow S=1019.2^{2020}-1=2038.2^{2019}-1\)
\(\Rightarrow S=2018.2^{2019}+20.2^{2019}-1>2018.2^{2019}+2019\)