Chương III - Hệ hai phương trình bậc nhất hai ẩn

LT

P=[\(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\)] :\(\dfrac{\sqrt{x}-1}{2}\)

a)Rút gọn biểu thức trên

b)Chứng minh rằng P > 0 với mọi x≥ 0 và x ≠ 1.

NT
20 tháng 12 2021 lúc 20:09

a: \(P=\dfrac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{2\sqrt{x}}{x\sqrt{x}-1}\)

Bình luận (2)
NM
13 tháng 3 2022 lúc 19:29

a, Với x ≥ 0, x ≠1 
P= [ \(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\)] : \(\dfrac{\sqrt{x}-1}{2}\)  = 
\(\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)]
\(\dfrac{\sqrt{x}-1}{2}\)
P= \(\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\):\(\dfrac{\sqrt{x}-1}{2}\)
P= \(\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{\sqrt{x}-1}{2}\)
P= \(\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)
P= \(\dfrac{2}{x+\sqrt{x}+1}\)
b, Ta có : \(x+\sqrt{x}+1=\left(\sqrt{x}\right)^2+2.\dfrac{1}{2}.\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}\)= (\(\sqrt{x}+\dfrac{1}{2}\))2 +\(\dfrac{3}{4}\) >\(0\)  ∀ x
=> \(\dfrac{3}{x+\sqrt{x}+1}>0\) ∀ x

=> P > 0 với mọi x ≥ 0 và x ≠ 1

Bình luận (0)

Các câu hỏi tương tự
TL
Xem chi tiết
TT
Xem chi tiết
HL
Xem chi tiết
WR
Xem chi tiết
HC
Xem chi tiết
H24
Xem chi tiết
EC
Xem chi tiết
NV
Xem chi tiết
NT
Xem chi tiết