giả sử phương trình đã cho có nghiệm này gấp đôi nghiệm kia
Và áp dụng hệ thúc viet ta có:
\(\begin{cases}x_1+x_2=-p\\x_{1.}.x_2=q\\x_1=2x_2\end{cases}\)=>\(\begin{cases}2x_2+x_2=-p\\x_{1.}.x_2=q\\x_1=2x_2\end{cases}\)=>\(\begin{cases}3x_2=-p\\x_{1.}.x_2=q\\x_1=2x_2\end{cases}\)=>\(\begin{cases}x_2=\frac{-p}{3}\\x_{1.}.x_2=q\left(1\right)\\x_1=\frac{-2p}{3}\end{cases}\)
Thay \(x_1\)=\(\frac{-2p}{3}\); \(x_2\)=\(\frac{-p}{3}\) vào (1) ta có:
\(\frac{-2p}{3}\).\(\frac{-p}{3}\)=q
2\(p^2\)=9q
2\(p^2\)-9q=0
Vậy khi 2\(p^2\)-9q=0 thì phương trình trên có nghiệm này gấp 2 nghiệm kia