HM

cho pt x^2+px+q=0 cmr nếu 2p^2-9q=0 thì pt có 2 nghiệm mà nghiệm này gấp đôi nghiệm kia 

HH
20 tháng 5 2016 lúc 12:22

 phương trình : \(x^2\)+px+q=0

giả sử phương trình này có nghiệm này gấp đôi nghiệm kia :\(x_1\)=2.\(x_2\)

áp dụng hệ thức vi ét và kết hợp điều kiện trên ta có:

\(\begin{cases}x_1=2x_2\\x_1+x_2=-p\\x_1.x_2=q\end{cases}\)<=>\(\begin{cases}x_1=2x_2\\2x_2+x_2=-p\\x_1.x_2=q\end{cases}\)<=>\(\begin{cases}x_1=2x_2\\3.x_2=-p\\x_1.x_2=q\end{cases}\)<=>\(\begin{cases}x_1=2x_2\\x_2=\frac{-p}{3}\\x_1.x_2=q\end{cases}\)

<=>\(\begin{cases}x_1=\frac{-2p}{3}_{ }\\x_2=\frac{-p}{3}\\x_1.x_2=q\end{cases}\) thay \(x_1\)=\(\frac{-2p}{3}\);\(x_2\)=\(\frac{-p}{3}\)  vào phương trình \(x_1\).\(x_2\)=q ta có:

\(\frac{-2p}{3}\).\(\frac{-p}{3}\)=q <=> 2\(p^2\)-9q=0

vậy khi    2\(p^2\)-9p=0 thì phương trình trên có nghiệm này gấp đôi nghiệm kia

Bình luận (0)

Các câu hỏi tương tự
HM
Xem chi tiết
TL
Xem chi tiết
PT
Xem chi tiết
BH
Xem chi tiết
TL
Xem chi tiết
HH
Xem chi tiết
BH
Xem chi tiết
XT
Xem chi tiết
PA
Xem chi tiết