Violympic toán 9

TN

cho pt \(x^2-\left(2m+3\right)x+m^2+2m+2=0\) tìm m để pt có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\left(x_1-x_2\right)^2=2x_1+x_2\)

NL
2 tháng 7 2020 lúc 22:47

\(\Delta=\left(2m+3\right)^2-4\left(m^2+2m+2\right)=4m+1\ge0\Rightarrow m\ge-\frac{1}{4}\)

\(\left(x_1+x_2\right)^2-4x_1x_2=x_1+x_2+x_1\)

\(\Leftrightarrow\left(2m+3\right)^2-4\left(m^2+2m+2\right)=2m+3+x_1\)

\(\Leftrightarrow4m+1=2m+3+x_1\)

\(\Rightarrow x_1=2m-2\Rightarrow x_2=2m+3-x_1=5\)

\(x_1x_2=m^2+2m+2\)

\(\Rightarrow5\left(2m-2\right)=m^2+2m+2\)

\(\Rightarrow m^2-8m+12=0\Rightarrow\left[{}\begin{matrix}m=6\\m=2\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
NS
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
NS
Xem chi tiết
NH
Xem chi tiết
NM
Xem chi tiết
PV
Xem chi tiết