Violympic toán 9

NM

Cho PT $x^2-2(m-1)x-2m=0$

Tìm $m$ để PT có 2 nghiệm $x_1,x_2$ thỏa mãn $x_1^2+3x_2-4x_1x_2=5$

KB
29 tháng 3 2022 lúc 22:13

P/t có : \(\Delta\)' = \(\left(m-1\right)^2-\left(-2m\right)=m^2+1\ge1>0\forall m\)  -> P/t có 2 no x1 ; x2 p/b . Theo Viet có : \(\left\{{}\begin{matrix}x1+x2=2\left(m-1\right)\\x1.x2=-2m\end{matrix}\right.\) 

\(\Rightarrow x1+x2+x1.x2=-2\) 

Mặt # ta có : \(\left[{}\begin{matrix}x1=m-1+\sqrt{m^2+1};x2=m-1-\sqrt{m^2+1}\\x1=m-1-\sqrt{m^2+1};x2=m-1+\sqrt{m^2+1}\end{matrix}\right.\)

Ta có : \(x1^2+3x2-4x1.x2=5\) 

Đặt x1 = a ; x2 = b ; ta có hệ : \(\left\{{}\begin{matrix}a+b+ab+2=0\left(1\right)\\a^2+3b-4ab-5=0\left(2\right)\end{matrix}\right.\)

Từ (1) suy ra : \(b=\dfrac{-\left(a+2\right)}{a+1}\)  ; ab = -a-b-2  ( Loại a = -1)

Thay vào (2) được : \(a^2+3b+4a+4b+8-5=0\)  \(\Leftrightarrow\left(a+2\right)^2+7b=1\)

\(\Leftrightarrow b=\dfrac{1-\left(a+2\right)^2}{7}\)

Suy ra : \(\dfrac{-\left(a+2\right)}{a+1}=\dfrac{1-\left(a+2\right)^2}{7}\)

\(\Leftrightarrow7\left(a+2\right)=\left[\left(a+2\right)^2-1\right]\left(a+1\right)\)

\(\Leftrightarrow\) \(a^3+5a^2-11=0\)

Đoạn này bí quá ; bn thử giải xem 

 

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
NS
Xem chi tiết
BB
Xem chi tiết
NS
Xem chi tiết
BB
Xem chi tiết
TN
Xem chi tiết
NS
Xem chi tiết
BB
Xem chi tiết
NS
Xem chi tiết