Theo Vi-et, ta có:
\(x_1+x_2=-\dfrac{b}{a}=4;x_1x_2=\dfrac{c}{a}=-2\)
\(P=\left|x_1\right|+\left|x_2\right|\)
=>\(P^2=x_1^2+x_2^2+2\left|x_1x_2\right|\)
\(=\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|\)
\(=4^2-2\cdot\left(-2\right)+2\left|-2\right|=16+4+4=24\)
=>\(P=\sqrt{24}=2\sqrt{6}\)