Bài 7: Phương trình quy về phương trình bậc hai

HH

Cho PT: x2-4mx+3m2-3=0 (x là ẩn, m là tham số)

a) Giải PT với m=1?

b) Tìm m để PT có 2 nghiệm x1; x2 thỏa mãn:\(\left|\dfrac{x_1+x_2+4}{x_1-x_2}\right|\) đạt GTLN?

CC
13 tháng 3 2018 lúc 20:46

a,thay m=1 vào phương trình ta được :

x2-4.1x+3.12-3=0

x2-4x=0

x(x-4)=0

x=0

x-4=0⇔x=4

phần b mình chưabiết lm ạ

Bình luận (0)
CC
14 tháng 4 2018 lúc 10:51

b) \(\Delta'=4m^2-3m^2+3=m^2+3>0\Rightarrow\) pt luôn có 2 nghiệm phân biệt

Theo hệ thức Viet ta có : \(\left\{{}\begin{matrix}x_1+x_2=4m\\x_1x_2=3m^2-3\end{matrix}\right.\)

Ta có: \(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\\ =16m^2-12m^2+12=4m^2+12\Rightarrow\left|x_1-x_2\right|=\sqrt{4m^2+12}\)

\(\left|\dfrac{x_1+x_2+4}{x_1-x_2}\right|=\left|\dfrac{4m+4}{\sqrt{4m^2+12}}\right|=\left|\dfrac{2m+2}{\sqrt{m^2+3}}\right|\)

Đặt \(y=\left|\dfrac{2m+2}{\sqrt{m^2+3}}\right|\ge0\Rightarrow y^2=\dfrac{\left(2m+2\right)^2}{m^2+3}\Rightarrow y^2m^2+3y^2=4m^2+8m+4\\ \Leftrightarrow\left(y^2-4\right)m^2-8m+3y^2-4=0\)

\(\Delta'=16-\left(3y^2-4\right)\left(y^2-4\right)\ge0\\ \Leftrightarrow-3y^4+16y^2\ge0\\ \Leftrightarrow y^2\le\dfrac{16}{3}\Leftrightarrow0\le y\le\dfrac{4\sqrt{3}}{3}\)

y đạt GTLN \(\Leftrightarrow\Delta'=0\Rightarrow m=\dfrac{4}{y^2-4}=\dfrac{4}{\dfrac{16}{3}-4}=3\)

Bình luận (0)

Các câu hỏi tương tự
AL
Xem chi tiết
H24
Xem chi tiết
CT
Xem chi tiết
UN
Xem chi tiết
LN
Xem chi tiết
TM
Xem chi tiết
QN
Xem chi tiết
MH
Xem chi tiết
TS
Xem chi tiết