Ta có : \(\left(x-7\right)\left(x-6\right)\left(x+2\right)\left(x+3\right)=m\)
=> \(\left(x^2-7x+3x-21\right)\left(x^2-6x+2x-12\right)=m\)
=> \(\left(x^2-4x-21\right)\left(x^2-4x-12\right)=m\)
- Đặt \(x^2-4x=a\) ta được phương trình :
\(\left(a-21\right)\left(a-12\right)=m\)
=> \(a^2-21a-12a+252-m=0\)
=> \(a^2-33a+252-m=0\)
=> \(\Delta=b^2-4ac=\left(-33\right)^2-4\left(252-m\right)=81+4m\)
Lại có : \(x^2-4x=a\)
=> \(x^2-4x-a=0\) ( I )
- Để phương trình ( I ) có 4 nghiệm phân biệt
<=> Phương trình ( II ) có hai nghiệm phân biệt
<=> \(\Delta>0\)
<=> \(m>-\frac{81}{4}\)
Nên phương trình có hai nghiệm phân biệt :
\(\left\{{}\begin{matrix}x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{33-\sqrt{81+4m}}{2}\\x_2=\frac{33+\sqrt{81+4m}}{2}\end{matrix}\right.\)
=> Ta được phương trình ( I ) là :
\(\left\{{}\begin{matrix}x^2-4x+\frac{\sqrt{81+4m}-33}{2}=0\\x^2-4x-\frac{\sqrt{81+4m}+33}{2}=0\end{matrix}\right.\)
- Theo vi ét : \(\left\{{}\begin{matrix}\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=\frac{33-\sqrt{81+4m}}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x_3+x_4=4\\x_3x_4=\frac{33+\sqrt{81+4m}}{2}\end{matrix}\right.\end{matrix}\right.\)
- Để \(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=4\)
<=> \(\frac{x_1+x_2}{x_1x_2}+\frac{x_3+x_4}{x_3x_4}=4\)
<=> \(\frac{4}{\frac{33-\sqrt{81+4m}}{2}}+\frac{4}{\frac{33+\sqrt{81+4m}}{2}}=4\)
<=> \(\frac{1}{\frac{33-\sqrt{81+4m}}{2}}+\frac{1}{\frac{33+\sqrt{81+4m}}{2}}=1\)
<=> \(\frac{2}{33-\sqrt{81+4m}}+\frac{2}{33+\sqrt{81+4m}}=1\)
<=> \(\frac{2\left(33-\sqrt{81+4m}\right)+2\left(33+\sqrt{81+4m}\right)}{\left(33-\sqrt{81+4m}\right)\left(33+\sqrt{81+4m}\right)}=1\)
<=> \(66-2\sqrt{81+4m}+66+2\sqrt{81+4m}=1089-81-4m\)
<=> \(66+66=1089-81-4m\)
<=> \(m=219\)