Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho phương trình bậc hai: x2 – 2mx + 2m – 5 = 0 ( m: tham số ) (1)
a/ Chứng tỏ rằng phương trình (1) luôn có 2 nghiệm phân biệt với mọi m.
b/ Gọi x1, x2 là nghiệm của phương trình (1). Tìm m để ( x1 – x2 )2 = 32
Cho pt x²-2(m+1)+6m-4=0 (1)(với m là tham số)
a, chứng minh rằng phương trình (1) luôn có 2 nghiệm phân biệt với mọi m
b, Tìm m để pt (1) có 2 nghiệm x1;x2 thỏa mãn (2m−2)x1+x22−4x2=4
Cho PT : x2 - 2mx + 2m+1 =0
a) cho phương trình có nghiệm là -3 . tính nghiệm còn lại
b) chứng minh phương trình luôn có 2 nghiệm với mọi m
c) gọi x1 x2 là 2 nghiệm của phương trình tìm m để x1^2 + x2^2 + 2x1x2 = 16
Cho phương trình x2 + 2mx – 1 = 0 ( m là tham số ) (2)
a/ Chứng minh phương trình(2) luôn có hai nghiệm phân biệt với mọi m
b/ Gọi x1, x2 là hai nghiệm của phương trình trên, tìm m để x12 + x22 – x1x2 = 7
Cho phương trình x2+ 2(m − 1)x − 6m − 7 = 0 (1) (m là tham số).
a) Chứng minh rằng với mọi giá trị của m thì phương trình (1) luôn có hai nghiệm phân biệt.
b) Gọi x1, x2là hai nghiệm của phương trình (1). Tìm các giá trị của m thỏa x1(x1+3/3x2)+x2(x2+3/2x1)=15
các bạn ai biết thì chỉ giúp mình với ạ
Cho pt: x2 - (m + 2) + 7m - 2m2 - 3 = 0 (với x là ẩn số) (1)
a) Chứng tỏ phương trình (1) luôn có 2 nghiệm phân biệt.
b) Tìm m để phương trình (1) có hai nghiệm x1 , x2 thỏa hệ thức:
2(x12 - x22) - 5x1x2 = 2
Cho phương trình X^2 - 2(m + 1)x + m - 6 = 0 (1) , ( với m là tham số )
a> Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt x1; x2 với mọi giá trị của m
b> Tìm một hệ thức liên hệ giữa x1 ; x2 không phụ thuộc vào m
c> với giá trị nào của m thì phương trình (1) có ít nhất một nghiệm dương
1.Cho phương trình: \(x^2-2\left(m-1\right)+2m-5=0\) (m là tham số). Chứng minh phương trình luôn có hai nghiệm phân biệt x1;x2 với mọi m. Tìm m để các nghiệm đó thỏa mãn hệ thức:
\(\left(x_1^2-2mx_1-x_2+2m-3\right)\left(x^2_2-2mx_2-x_1+2m-3\right)=19\)