Bài 6: Hệ thức Vi-et và ứng dụng

AH

Cho phương trình X^2 - 2(m + 1)x + m - 6 = 0 (1) , ( với m là tham số )
a> Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt x1; x2 với mọi giá trị của m
b> Tìm một hệ thức liên hệ giữa x1 ; x2 không phụ thuộc vào m
c> với giá trị nào của m thì phương trình (1) có ít nhất một nghiệm dương

 

NT
12 tháng 5 2023 lúc 8:18

a: Δ=(2m+2)^2-4(m-6)

=4m^2+8m+4-4m+24

=4m^2+4m+28

=(2m+1)^2+27>0

=>Phương trình luôn có hai nghiệm phân biệt

c: Để (1) có ít nhất 1 nghiệm dương thì

m-6<0 hoặc (2m+2>0 và m-6>0)

=>m>6 hoặc m<6

Bình luận (0)

Các câu hỏi tương tự
PV
Xem chi tiết
VK
Xem chi tiết
BS
Xem chi tiết
NQ
Xem chi tiết
NQ
Xem chi tiết
TL
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
KG
Xem chi tiết