a, \(\Delta'=m^2-\left(m^2-4\right)=4>0\)
Vậy pt luôn có 2 nghiệm pb x1;x2
Theo Vi et \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m^2-4\end{cases}}\)
Ta có : \(2x_1-3x_2=-1\left(3\right)\)Từ (1) ;(3) ta có hệ
\(\hept{\begin{cases}2x_1+2x_2=4m\\2x_1-3x_2=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}5x_2=4m+1\\x_1=2m-x_2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_2=\frac{4m+1}{5}\\x_1=\frac{10-4m-1}{5}=\frac{-4m+9}{5}\end{cases}}\)
Thay vào (2) ta được \(\frac{\left(4m+1\right)\left(-4m+9\right)}{25}=m^2-4\)
\(\Rightarrow-16m^2+36m-4m+9=25\left(m^2-4\right)\)
\(\Leftrightarrow41m^2-32m-109=0\)
bạn tự tính = delta' nhé, có gì sai bảo mình do số khá to và phức tạp á
b, Ta có \(\left|x_1\right|=\left|x_2\right|\)suy ra
\(\left|\frac{4m+1}{5}\right|=\left|\frac{9-4m}{5}\right|\Rightarrow\left|4m+1\right|=\left|9-4m\right|\)
TH1 : \(4m+1=9-4m\Leftrightarrow8m=8\Leftrightarrow m=1\)
TH2 : \(4m+1=4m-9\left(voli\right)\)
Ta tính được \(\delta\) \(=\left(-2m\right)^2-4\left(m^2-4\right)=16>0\)
= > PT có 2 nghiệm phân biệt với mọi m
\(x_1=\frac{2m+4}{2}=m+2\)
\(x_2=\frac{2m-4}{2}=m-2\)
a, \(2.x_1-3.x_2=-1\)
\(\Leftrightarrow2\left(m+2\right)-3.\left(m-2\right)=-1\)
\(\Leftrightarrow2m-3m+4+6=1\)
\(\Leftrightarrow m=9\)
b, \(\left|x_1\right|=\left|x_2\right|\)
\(\left|m+2\right|=\left|m-2\right|\)
\(\Leftrightarrow\hept{\begin{cases}m+2=m-2\\m+2=2-m\end{cases}}\)
\(\Leftrightarrow m=0\)