MH

cho pt x2 + 2(m - 2)x - m2 = 0 ( m là tham số)
a) Giải pt khi m = 0
b) Trong trường hợp pt có 2 nghiệm phân biệt x1, x2 (x1 < x2) . Tìm m sao cho |x1| - |x2| = 6

H9
12 tháng 8 2023 lúc 14:45

a) Khi m = 0 thì phương trình trở thành:

\(x^2+2\left(0-2\right)x-0^2=0\)

\(\Leftrightarrow x^2+2\cdot-2x-0=0\)

\(\Leftrightarrow x^2-4x=0\)

\(\Leftrightarrow x\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

b) Ta có: 

\(\left|x_1\right|-\left|x_2\right|=6\)

\(\Leftrightarrow x^2_1+x_2^2-2\left|x_1x_2\right|=36\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-2\left|x_1x_2\right|=36\)

Mà: \(x_1+x_2=-2\left(m-2\right)=4-2m\)

\(x_1x_2=-m^2\)

\(\Leftrightarrow\left(4-2m\right)^2-2\cdot-m^2-2\cdot m^2=36\)

\(\Leftrightarrow16-16m+4m^2+2m^2-2m^2=36\)

\(\Leftrightarrow\left(4-2m\right)^2=6^2\)

\(\Leftrightarrow\left[{}\begin{matrix}4-2m=6\\4-2m=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2m=-2\\2m=10\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=5\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
PU
Xem chi tiết
PT
Xem chi tiết
TV
Xem chi tiết
TA
Xem chi tiết
H24
Xem chi tiết
DA
Xem chi tiết
PU
Xem chi tiết
TG
Xem chi tiết
PU
Xem chi tiết