Bài 4: Công thức nghiệm của phương trình bậc hai

JE

Cho pt: \(x^2-2mx-4m-11=0\) (x là ẩn, m là tham số)

a) Giải PT khi m= 1

b) Chứng tỏ pt luôn có 2 nghiệm phân biệt với mọi m

c) Tìm m để pt có 2 nghiệm \(x_1\), \(x_2\) thỏa mãn \(\frac{x_1}{x_2-1}+\frac{x_2}{x_1-1}=-5\)

NL
24 tháng 3 2019 lúc 20:58

b/ \(\Delta'=m^2+4m+11=\left(m+2\right)^2+7>0\) \(\forall m\)

\(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt

c/ Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-4m-11\end{matrix}\right.\)

\(\frac{x_1}{x_2-1}+\frac{x_2}{x_1-1}=-5\Leftrightarrow\frac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_1-1\right)\left(x_2-1\right)}=-5\)

\(\Leftrightarrow\frac{x_1^2+x_2^2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=-5\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=-5\)

\(\Leftrightarrow\frac{4m^2+8m+22-2m}{-4m-11-2m+1}=-5\Leftrightarrow4m^2+6m+22=30m+50\)

\(\Leftrightarrow4m^2-24m-28=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=7\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
JE
Xem chi tiết
NK
Xem chi tiết
H24
Xem chi tiết
HD
Xem chi tiết
MK
Xem chi tiết
TK
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
AN
Xem chi tiết