Bài 4: Công thức nghiệm của phương trình bậc hai

HD

1. Tìm m để phương trình \(x^2-\left(2m+1\right)x+m^2-1=0\) có nghiệm \(x_1,x_2\) sao cho \(x_1^2+x_2^2=5\)

2. Cho phương trình \(\left(m-1\right)x^2-2mx+m+2=0\) . Tìm m để phương trình trên có hai nghiệm phân biệt \(x_1,x_2\) thỏa mãn hệ thức \(\frac{x_1}{x_2}+\frac{x_2}{x_1}+6=0\)

LÀM ƠN GIÚP MÌNH NHÉ PLZ

LD
26 tháng 10 2019 lúc 18:26

1.

ĐK phương trình có 2 nghiệm:

\(\Delta\ge0\Leftrightarrow\left(2m+1\right)^2-4\left(m^2-1\right)\ge0\)

\(\Leftrightarrow4m^2+4m+1-4m^2+4\ge0\)

\(\Leftrightarrow4m+5\ge0\Leftrightarrow m\ge-\frac{5}{4}\)

Khi đó, theo hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m^2-1\end{matrix}\right.\)

\(\Rightarrow x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(2m+1\right)^2-2\left(m^2-1\right)=4m^2+4m+1-2m^2+2=2m^2+4m+3\)

\(x_1^2+x_2^2=5\)

\(\Rightarrow2m^2+4m+3=5\)

\(\Leftrightarrow2m^2+4m-2=0\)

\(\Leftrightarrow m^2+2m-1=0\)

\(\Delta_{pt2}=2^2-4\left(-1\right)=4+4=8\)

\(\Rightarrow\left\{{}\begin{matrix}m_1=\frac{-2+2\sqrt{2}}{2}=-1+\sqrt{2}\left(tm\right)\\m_2=\frac{-2-2\sqrt{2}}{2}=-1-\sqrt{2}\left(l\right)\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
LH
26 tháng 10 2019 lúc 20:14

Xét pt \(\left(m-1\right)x^2-2mx+m+2=0\)

Để pt có hai nghiệm phân biệt <=>\(\Delta>0\)\(m\ne1\)

<=> \(\left(-2m\right)^2-4\left(m-1\right)\left(m+2\right)>0\)

<=> \(4m^2-4\left(m^2+m-2\right)>0\)

<=> \(8-4m>0\) <=>m<2 và \(m\ne1\)

Áp dụng ht viet có: \(\left\{{}\begin{matrix}x_1+x_2=\frac{2m}{m-1}\\x_1.x_2=\frac{m+2}{m-1}\end{matrix}\right.\)

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}+6=0\) <=> \(\frac{x_1^2+x_2^2+6x_1x_2}{x_1x_2}=0\)

<=> \(\left(x_1+x_2\right)^2+4x_1x_2=0\) <=> \(\frac{4m^2}{\left(m-1\right)^2}+\frac{4\left(m+2\right)}{m-1}=0\)

<=>\(4m^2+4\left(m+2\right)\left(m-1\right)=0\) <=> \(4m^2+4\left(m^2+m-2\right)=0\)

<=>\(8m^2+4m-8=0\)

\(\Delta=4^2-4.\left(-8\right).8=272>0\)

=>\(\sqrt{\Delta}=4\sqrt{17}\)

=>\(m_1=\frac{-4+4\sqrt{17}}{2.8}=\frac{-1+\sqrt{17}}{4}\) (tm) và \(m_2=\frac{-4-4\sqrt{17}}{8.2}=\frac{-1-\sqrt{17}}{4}\) (tm)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
MK
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
TK
Xem chi tiết
KN
Xem chi tiết
H24
Xem chi tiết
MK
Xem chi tiết
NH
Xem chi tiết
SN
Xem chi tiết