NA

Cho phương trình :x2 -mx+m-1=0(*).Xác định m để phương trình có 2 nghiệm x1,x2 thoả mãn x12 +x22 =5

NT
24 tháng 1 2024 lúc 20:29

\(\text{Δ}=\left(-m\right)^2-4\left(m-1\right)\)

\(=m^2-4m+4\)

\(=\left(m-2\right)^2\)>=0 với mọi m

=>Phương trình luôn có hai nghiệm

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-m\right)}{1}=m\\x_1x_2=\dfrac{c}{a}=\dfrac{m-1}{1}=m-1\end{matrix}\right.\)

\(x_1^2+x_2^2=5\)

=>\(\left(x_1+x_2\right)^2-2x_1x_2=5\)

=>\(m^2-2\left(m-1\right)-5=0\)

=>\(m^2-2m-3=0\)

=>(m-3)(m+1)=0

=>\(\left[{}\begin{matrix}m-3=0\\m+1=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}m=3\\m=-1\end{matrix}\right.\)

 

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
HD
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
NH
Xem chi tiết
PB
Xem chi tiết
DH
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết