TN

Cho phương trình x2-mx+m-1=0 (1).Gọi x1,x2 là các nghiệm của phương trình (1).Đặt B=\(\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2\left(x_1x_2+1\right)}\) , giá trị nhỏ nhất của B là

A.-1        B.\(\dfrac{-1}{4}\)        C.\(\dfrac{1}{2}\)         D.\(\dfrac{-1}{2}\)

NL
21 tháng 4 2023 lúc 20:54

\(\Delta=m^2-4\left(m-1\right)=\left(m-2\right)^2\ge0;\forall m\) nên pt luôn có 2 nghiệm

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)

\(B=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2\left(x_1x_2+1\right)}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}\)

\(=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}=\dfrac{4m+2}{2\left(m^2+2\right)}=\dfrac{m^2+4m+4-\left(m^2+2\right)}{2\left(m^2+2\right)}\)

\(=\dfrac{\left(m+2\right)^2}{2\left(m^2+2\right)}-\dfrac{1}{2}\ge-\dfrac{1}{2}\)

Vậy \(B_{min}=-\dfrac{1}{2}\)

Bình luận (0)

Các câu hỏi tương tự
NQ
Xem chi tiết
FM
Xem chi tiết
H24
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
GC
Xem chi tiết
CD
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết