§3. Hàm số bậc hai

DT

Cho phương trình: x^2 - mx + 2m - 4 = 0 (1)

a) chứng minh rằng phương trình (1) luôn có nghiệm với mọi giá trị của m.

b) tìm giá trị của m để biểu thức A = x1^2 + x2^2 - 9 có giá trị nhỏ nhất.

NL
22 tháng 4 2019 lúc 22:20

a) Xét \(\Delta\) = b2 - 4ac = (-m)2 - 4(2m - 4)

= m2 - 8m + 16 = ( m - 4 )2

Ta có: ( m - 4 )2 \(\ge\) 0

=> Pt luôn có nghiệm

b) Vì phương trình luôn có nghiệm nên áp dụng định lí Ta- lét:

\(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}==m\\x_1x_2=2m-4\end{matrix}\right.\)
Xét phương trình: x12 + x22 - 9

= x12 + x22 + 2x1x2 - 2x1x2 - 9

= (x1 + x2)2 - 2x1x2 - 9

= (-m)2 - 2(2m - 4) - 9

= m2 - 4m + 8 - 9

= m2 - 4m - 1 = m2 - 4m + 4 - 5

= (m - 2)2 - 5

Xét (m - 2)2 \(\ge\) 0

=> (m - 2)2 - 5 \(\ge\) -5

Dấu " =" xảy ra khi m - 2 = 0

<=> m = 2

Bình luận (0)
NL
22 tháng 4 2019 lúc 22:18

\(\Delta=m^2-8m+16=\left(m-4\right)^2\ge0\Rightarrow\) pt luôn có nghiệm

Khi đó theo Viet \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=2m-4\end{matrix}\right.\)

\(A=x_1^2+x_2^2-9=\left(x_1+x_2\right)^2-2x_1x_2-9\)

\(A=m^2-2\left(2m-4\right)-9\)

\(A=m^2-4m-1\)

\(A=\left(m-2\right)^2-5\ge-5\)

\(\Rightarrow A_{min}=-5\) khi \(m=-2\)

Bình luận (0)

Các câu hỏi tương tự
HO
Xem chi tiết
H24
Xem chi tiết
C1
Xem chi tiết
HO
Xem chi tiết
HA
Xem chi tiết
VD
Xem chi tiết
DP
Xem chi tiết
NQ
Xem chi tiết
H24
Xem chi tiết