H24

Cho phương trình x2 + (m-4)x -m + 3 =0,  m là tham số

1) Tìm m để phương trình nhận x = 5 +  \(6\sqrt{3}\) là nghiệm. Tìm nghiệm còn lại

2) Tìm m để phương trình có hai nghiệm x1 , xthoả mãn 3x- x= 2

NT
7 tháng 3 2022 lúc 23:51

2: \(\text{Δ}=\left(m-4\right)^2-4\left(-m+3\right)\)

\(=m^2-8m+16+4m-12\)

\(=m^2-4m+4=\left(m-2\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm với mọi m

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}3x_1-x_2=2\\x_1+x_2=-m+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_1=6-m\\x_2=3x_1-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{6-m}{4}\\x_2=\dfrac{3\left(6-m\right)}{4}-2=\dfrac{18-3m-8}{4}=\dfrac{10-3m}{4}\end{matrix}\right.\)

Theo đề, ta có: \(x_1x_2=-m+3\)

\(\Leftrightarrow\left(m-6\right)\left(3m-10\right)=16\left(-m+3\right)\)

\(\Leftrightarrow3m^2-30m-18m+60+16m-48=0\)

\(\Leftrightarrow3m^2-32m+12=0\)

\(\text{Δ}=\left(-32\right)^2-4\cdot3\cdot12=880>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{32-4\sqrt{55}}{6}=\dfrac{16-2\sqrt{55}}{3}\\x_2=\dfrac{16+2\sqrt{55}}{3}\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
HL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NQ
Xem chi tiết
NA
Xem chi tiết
OC
Xem chi tiết
CV
Xem chi tiết
GL
Xem chi tiết
H24
Xem chi tiết