Δ=(-2m)^2-4(m-1)
=4m^2-4m+4
=4m^2-4m+1+3
=(2m-1)^2+3>=3>0
=>Phương trình luôn có hai nghiệm phân biệt
Δ=(-2m)^2-4(m-1)
=4m^2-4m+4
=4m^2-4m+1+3
=(2m-1)^2+3>=3>0
=>Phương trình luôn có hai nghiệm phân biệt
Cho phương trình x 2 − 2 m x + m 2 − 1 = 0 1 , với m là tham số.
1) Giải phương trình (1) khi m= 2
2) Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt với mọi m. Gọi x 1 , x 2 là hai nghiệm của phương trình (1) lập phương trình bậc hai nhận x 1 3 − 2 m x 1 2 + m 2 x 1 − 2 và x 2 3 − 2 m x 2 2 + m 2 x 2 − 2 là nghiệm.
1.Rút gọn biểu thức: P= √x/√x+1 + 2√x/x +1 - 3x+1/x-1 (với x>= 0 , x khác 1)
2.Cho Phương trình x^2mx-1=0 (m là Tham số)
a)Chứng minh luôn có hai nghiệm phân biệt
b)Tìm m để phương trình có hai nghiệm x1,x2 thỏa mãn x1^2+x2^2=7
Cho phương trình x2-mx+m-1=0.
giải phương trình với m=3
chứng minh phương trình có nghiệm với mọi m
Cho phương trình x2-2mx+m=7. chứng minh phương trình có 2 nghiệm phân biệt với mọi m
Cho phương trình x2 – 2(m – 1)x + 2m – 5 = 0 (m là tham số)
1/ Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi m
2/ Tìm các giá trị của m để phương trình có hai nghiệm trái dậu
3/ Với giá trị nào của m thì biểu thức A = x12 + x22 đạt giá trị nhỏ nhất. Tìm giá trị đó
X^2 - 2(m+2)X +2m+1=0(m là tham số)
Chứng minh rằng với mọi m phương trình luôn có hai nghiệm phân biệt X1;X2
Cho phương trình x2 - 2mx - 2 = 0 (1), (m là tham số). Chứng minh phương trình (1) luôn có hai nghiệm x1,x2. Với các giá trị nào của tham số m thì x12 + x22 = 12.
Cho phương trình x2 - 2mx - 2 = 0 (1), (m là tham số). Chứng minh phương trình (1) luôn có hai nghiệm x1,x2. Với các giá trị nào của tham số m thì x12 + x22 = 12.
Cho phương trình: x^2-2mx+4m-5=0
a) Chứng tỏ rằng phương trình luôn có 2 nghiệm phân biệt với mọi m
b) Giải phương trình với m=2
c) Chứng minh rằng: P=x1(4-x2)+x2(4-x1) không phụ thuộc vào m
Cho phương trình: x2 - 2mx + 2m -3 = 0 (m là tham số thực) a) Tìm m để phương trình có hai nghiệm phân biệt với mọi m b) Tìm m để phương trình có 2 nghiệm trái dấu