Ôn thi vào 10

PP

cho phương trình \(x^2\)-2(m-1)x-3-m=0

a chứng minh phương trình có hai nghiệm với mọi m

b xác định m để phương trình có hai nghiệm \(x_1,x_2\)thỏa mản \(x_1^2\)+\(x_2^2\)≥10

H24
24 tháng 5 2022 lúc 14:35

`a)` Ptr có:`\Delta' =[-(m-1)]^2-(-3-m)`

                            `=m^2-2m+1+3+2m=m^2+4 > 0 AA m`

  `=>` Ptr có `2` nghiệm `AA m`

`b) AA m`, áp dụng Vi-ét có:`{(x_1+x_2=[-b]/a=2m-2),(x_1.x_2=c/a=-3-m):}`

Ta có:`x_1 ^2+x_2 ^2 >= 10`

`<=>(x_1+x_2)^2-2x_1.x_2 >= 10`

`<=>(2m-2)^2-2(-3-m) >= 10`

`<=>4m^2-8m+4+6+2m >= 10`

`<=>4m^2-6m+10 >= 10`

`<=>4m^2-6m >= 0`

`<=>2m(2m-3) >= 0`

`<=>` $\left[\begin{matrix} m \ge \dfrac{3}{2}\\ m \le 0\end{matrix}\right.$

Vậy `m >= 3/2` hoặc `m <= 0` thì t/m yêu cầu đề bài

Bình luận (0)
NT
24 tháng 5 2022 lúc 14:36

a: \(\text{Δ}=\left(2m-2\right)^2-4\left(-m-3\right)\)

\(=4m^2-8m+4+4m+12=4m^2-4m+16\)

\(=\left(2m-1\right)^2+15>0\)

Do đó: Phương trình luôn có hai nghiệm

b: Theo Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-m-3\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2>=10\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2>=10\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(-m-3\right)>=10\)

\(\Leftrightarrow4m^2-8m+4+2m+6-10>=0\)

\(\Leftrightarrow4m^2-6m>=0\)

=>2m(2m-3)>=0

=>m>=3/2 hoặc m<=0

Bình luận (0)
VD
24 tháng 5 2022 lúc 14:36

a, Ta có:

\(\Delta'=\left[-\left(m-1\right)\right]^2-1\left(-3-m\right)\\ =\left(m-1\right)^2-\left(-3-m\right)\\ =m^2-2m+1+3+m\\ =m^2-m+4\\ =\left(m^2-m+\dfrac{1}{4}\right)+\dfrac{15}{4}\\ =\left(m-\dfrac{1}{2}\right)^2+\dfrac{15}{4}>0\)

Suy ra pt luôn có 2 nghiệm phân biệt

b, Theo Vi-ét:\(x_1+x_2=2m-2;x_1x_2=-m-3\)

\(x_1^2+x_2^2\ge10\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\\ \Leftrightarrow\left(2m-2\right)^2-2\left(-m-3\right)-10\ge0\\ \Leftrightarrow4m^2-8m+4+2m+6-10\ge0\\ \Leftrightarrow4m^2-6m\ge0\\ \Leftrightarrow2m\left(2m-3\right)\ge0\\ \Leftrightarrow m\left(2m-3\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m\ge0\\2m-3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}m\le0\\2m-3\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m\ge0\\m\ge\dfrac{3}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}m\le0\\m\le\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m\ge\dfrac{3}{2}\\m\le0\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
TT
Xem chi tiết
TK
Xem chi tiết
TM
Xem chi tiết
AQ
Xem chi tiết
AQ
Xem chi tiết
AQ
Xem chi tiết
KT
Xem chi tiết
NR
Xem chi tiết