Ôn thi vào 10

TM

Cho phương trình \(x^2-\left(2m+1\right)x-m^2-m=0\) có hai nghiệm \(x_1,x_2\) thỏa mãn \(x_1< x_2\). Tìm mọi giá trị m để : \(S=x_1^2-x_2=-1\).

H24
11 tháng 4 2023 lúc 22:31

Cách ngắn ngọn nhất:

x2−2(m+1)x+4m=0(1)�2−2(�+1)�+4�=0(1)

⇔x2−2x−2mx+4m=0⇔�2−2�−2��+4�=0

⇔x(x−2)−2m(x−2)=0⇔�(�−2)−2�(�−2)=0

⇔(x−2)(x−2m)=0⇔(�−2)(�−2�)=0

⇔[x=2x=2m⇔[�=2�=2�

Phương trình (1) có 2 nghiệm là x=2;x=2m�=2;�=2�. Mặt khác phương trình (1) cũng có 2 nghiệm là x1, x2 nên ta chia làm 2 trường hợp:

TH1x1=2;x2=2m�1=2;�2=2�.

Có 2x1−x2=−2⇒2.2−2m=−2⇔m=32�1−�2=−2⇒2.2−2�=−2⇔�=3

TH2x1=2m;x2=2�1=2�;�2=2

Có 2x1−x2=−2⇒2.(2m)−2=−2⇔m=02�1−�2=−2⇒2.(2�)−2=−2⇔�=0

Vậy m=0 hay m=3

Bình luận (1)

Các câu hỏi tương tự
NR
Xem chi tiết
H24
Xem chi tiết
BD
Xem chi tiết
KT
Xem chi tiết
NR
Xem chi tiết
HB
Xem chi tiết
H24
Xem chi tiết
AQ
Xem chi tiết
HB
Xem chi tiết