Ôn thi vào 10

AQ

Cho phương trình :
\(x^2-2\left(m+2\right)x+m^2+m+3=0\)
a.giải phương trình khi m = 0

b.tìm m để phương trình có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=4\)

NT
25 tháng 2 2022 lúc 18:35

a, bạn tự làm 

b, \(\Delta'=\left(m+2\right)^2-\left(m^2+m+3\right)=m^2+4m+4-m^2-m-3\)

\(=3m+1\)để pt có 2 nghiệm \(m\ge-\dfrac{1}{3}\)

Ta có \(\dfrac{x_1^2+x_2^2}{x_1x_2}=4\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=4\Rightarrow\left(x_1+x_2\right)^2-6x_1x_2=0\)

\(\Rightarrow4\left(m+2\right)^2-6\left(m^2+m+3\right)=0\)

\(\Leftrightarrow4m^2+16m+16-6m^2-6m-18=0\)

\(\Leftrightarrow-2m^2+10m-2=0\Leftrightarrow m^2-5m+1=0\Leftrightarrow m=\dfrac{5\pm\sqrt{21}}{2}\)(tm) 

Bình luận (0)

Các câu hỏi tương tự
AQ
Xem chi tiết
AQ
Xem chi tiết
KT
Xem chi tiết
BD
Xem chi tiết
NR
Xem chi tiết
H24
Xem chi tiết
NR
Xem chi tiết
H24
Xem chi tiết
TM
Xem chi tiết