Ôn thi vào 10

AQ

Cho phương trình \(x^2+mx-35=0\)
a.Tìm m để phương trình có 1 nghiệm = -5.Tìm nghiệm còn lại?
b.Tìm m để phương trình có 2 nghiệm \(x_1,x_2\) thỏa mãn \(x_1^2+x_2^2=86\)

NT
4 tháng 3 2022 lúc 7:36

a, Thay x = -5 ta đc 

\(25-5m-35=0\Leftrightarrow-5m-10=0\Leftrightarrow m=-2\)

Thay m = -2 ta đc \(x^2-2x-35=0\Leftrightarrow\left(x+5\right)\left(x-7\right)=0\Leftrightarrow x=-5;x=7\)

b, \(\Delta=m^2-4\left(-35\right)=m^2+4.35>0\)

Vậy pt trên luôn có 2 nghiệm pb 

Ta có \(\left(x_1+x_2\right)^2-2x_1x_2=86\Rightarrow m^2-2\left(-35\right)=86\)

\(\Leftrightarrow m^2=16\Leftrightarrow m=-4;m=4\)

Bình luận (0)
NT
4 tháng 3 2022 lúc 7:36

a: Thay x=-5 vào pt, ta được:

25-5m-35=0

=>5m+10=0

hay m=-2

Theo đề, ta có: \(x_1x_2=-35\)

nên \(x_2=7\)

b: \(ac=-1\cdot35< 0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2=86\)

\(\Leftrightarrow m^2-2\cdot\left(-35\right)=86\)

hay \(m\in\left\{4;-4\right\}\)

Bình luận (0)

Các câu hỏi tương tự
AQ
Xem chi tiết
AL
Xem chi tiết
AQ
Xem chi tiết
NR
Xem chi tiết
TT
Xem chi tiết
NR
Xem chi tiết
AQ
Xem chi tiết
NR
Xem chi tiết
AQ
Xem chi tiết