\(\Delta'=\left(m+1\right)^2-m+4=m^2+m+5>0;\forall m\)
Phương trình luôn luôn có 2 nghiệm
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m-4\end{matrix}\right.\)
Xét \(A=\left|x_1-x_2\right|\ge0\)
\(\Leftrightarrow A^2=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(\Leftrightarrow A^2=4\left(m+1\right)^2-4\left(m-4\right)\)
\(\Leftrightarrow A^2=4m^2+4m+20\)
\(\Leftrightarrow A^2=\left(2m+1\right)^2+19\ge19\)
\(\Rightarrow A\ge\sqrt{19}\Rightarrow\left|x_1-x_2\right|+1\ge\sqrt{19}+1\)
Dấu "=" xảy ra khi \(m=-\frac{1}{2}\)