Violympic toán 9

NH

tìm m để phương trình \(x^2+\left(2-m\right)x+m-3=0\) có hai nghiệm phân biệt thỏa mãn \(\left|x_1\right|+x_2^2=2\)

DK
1 tháng 6 2021 lúc 21:51

Để phương trình có 2 nghiệm phân biệt

\(\Delta=\left(2-m\right)^2-4.1.\left(m-3\right)>0\Leftrightarrow m^2-4m+4-4m+12>0\)

\(\Leftrightarrow m^2-8m+16>0\Leftrightarrow\left(m-4\right)^2>0\Leftrightarrow m-4\ne0\Leftrightarrow m\ne4\)

Thấy : \(1+\left(2-m\right)+m-3=0\)

-> phương trình có nghiệm là 1

Th1 : \(x_1=1;x_2=\dfrac{c}{a}=m-3\)

\(\left|x_1\right|+x_2^2=2\Leftrightarrow\left|1\right|+\left(m-3\right)^2=2\)

\(\Leftrightarrow\left(m-3\right)^2=1\Leftrightarrow\)\(\left\{{}\begin{matrix}m-3=1\\m-3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=4\left(L\right)\\m=2\left(C\right)\end{matrix}\right.\)

TH2 : \(x_1=\dfrac{c}{a}=m-1;x_2=1\)

\(\Leftrightarrow\left|m-1\right|+1^2=2\Leftrightarrow\left|m-1\right|=1\)

hoàn toàn giống với th1.

Vậy \(m=2\)

Bình luận (2)

Các câu hỏi tương tự
NH
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
NL
Xem chi tiết
NS
Xem chi tiết
NS
Xem chi tiết
BB
Xem chi tiết
NS
Xem chi tiết
TA
Xem chi tiết