\(x^2-2\left(m-1\right)x+m-3=0\)
\(\Delta'=b'^2-ac=\left[-\left(m-1\right)^2\right]-1.\left(m-3\right)=m^2-2m+1-m+3=m^2-3m+4\)
\(=m^2-2.m.\frac{3}{2}+\frac{9}{4}+\frac{7}{4}=\left(m-\frac{3}{2}\right)^2+\frac{7}{4}\)
Vì\(\left(m-\frac{3}{2}\right)^2\ge0\forall m\)
\(\Rightarrow\left(m-\frac{3}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\forall m\)
\(\Rightarrow\Delta'>0\forall m\)
Vậy...