MB

Cho phương trình: \(mx^2-(5m-2)x+2m+10=0\)

a) tìm m để phương trình có 2 nghiệm đối nhau

b) Tìm m để phương trình có 2 nghiệm là hai số nghịch đảo của nhau 

NL
15 tháng 1 2024 lúc 20:05

\(\Delta=\left(5m-2\right)^2-4m\left(2m+10\right)=17m^2-60m+4\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{5m-2}{m}\\x_1x_2=\dfrac{2m+10}{m}\end{matrix}\right.\)

a.

Phương trình có 2 nghiệm đối nhau

\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\m\ne0\\x_1+x_2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}17m^2-60m+4>0\left(1\right)\\m\ne0\\\dfrac{5m-2}{m}=0\end{matrix}\right.\)

Từ \(\dfrac{5m-2}{m}=0\Rightarrow5m-2=0\Rightarrow m=\dfrac{2}{5}\)

Thế vào (1) kiểm tra thấy ko thỏa mãn.

Vậy ko tồn tại m thỏa mãn yêu cầu

b.

Pt có 2 nghiệm là nghịch đảo của nhau khi:

\(\left\{{}\begin{matrix}\Delta>0\\m\ne0\\x_1x_2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}17m^2-60m+4>0\\m\ne0\\\dfrac{2m+10}{m}=1\end{matrix}\right.\)

Từ \(\dfrac{2m+10}{m}=1\Rightarrow2m+10=m\)

\(\Rightarrow m=10\)

Thế vào \(17m^2-60m+4>0\) kiểm tra thấy thỏa mãn

Vậy \(m=10\)

Bình luận (0)

Các câu hỏi tương tự
LC
Xem chi tiết
NQ
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết