H24

Cho phương trình bậc 2 : x- 2(m+1)x + 2m + 10 = 0 (1)

a. Tìm m để phương trình (1) có hai nghiệm x1,x2 sao cho P = 6x1x2 + x12 + x22 đạt giá trị nhỏ nhất, tìm giá trị nhỏ nhất đó.

b. Hãy tìm một hệ thức giữa hai nghiệm không phụ thuộc vào m.

         

NL
25 tháng 3 2022 lúc 22:31

\(\Delta'=\left(m+1\right)^2-2m-10=m^2-9\ge0\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m+10\end{matrix}\right.\)

a.

\(P=x_1^2+x_2^2+6x_1x_2=\left(x_1+x_2\right)^2+4x_1x_2\)

\(P=4\left(m+1\right)^2+4\left(2m+10\right)\)

\(P=4m^2+16m+44=\left(4m^2+16m+12\right)+32\)

\(P=4\left(m+1\right)\left(m+3\right)+32\ge32\)

\(P_{min}=32\) khi \(m=-3\)

b.

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=2m+10\end{matrix}\right.\)

Trừ vế cho vế:

\(x_1+x_2-x_1x_2=-8\)

Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m

Bình luận (0)

Các câu hỏi tương tự
DQ
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
PN
Xem chi tiết
TN
Xem chi tiết
FM
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
HH
Xem chi tiết