Ta có: \(\Delta=5^2-5.3.1=25-12=13>0\)
Suy ra pt luôn có 2 nghiệm phân biệt
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=-1\end{matrix}\right.\)
\(K=\left(3x_1-1\right)\left(3x_2-1\right)+3\\ =3x_1x_2-3x_2-3x_1+1+3=3.\left(-1\right)-3\left(x_1+x_2\right)+4\\ =-3+4-3\left(-5\right)\\ =1+15\\ =16\)
\(\Delta=25-4\left(-1\right).3=25+12=37>0\)
vậy pt luôn có 2 nghiệm pb
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{5}{3}\\x_1x_2=-\dfrac{1}{3}\end{matrix}\right.\)
Ta có \(K=9x_1x_2-3\left(x_1+x_2\right)+4\)
Thay vào ta được \(K=9\left(-\dfrac{1}{3}\right)-3\left(-\dfrac{5}{3}\right)+4=-3+5+4=6\)