HT

cho phân thức: \(\dfrac{x^2-6x+9}{x^2-3x}\)

a)tìm điều kiện của x để giá trị phân thức được xác định
b)rút gọn phân thức
c)tính giá trị của phân thức khi x=5?

H24
18 tháng 12 2022 lúc 0:20

`a,`

\(x^2-3x\ne0\)

`<=>x(x-3)`\(\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x-3\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne3\end{matrix}\right.\)

`b,`

đặt `A=(x^2-6x+9)/(x^2-3x)`

`A= ((x-3)^2)/(x(x-3))`

`A= (x-3)/x`

`c, `

để `x=5`

`=> A= (x -3)/x=(5-3)/5= 2/5`

 

Bình luận (0)
ML
18 tháng 12 2022 lúc 0:19

a/ ĐKXĐ: \(x^2-3x\ne0\) \(\Leftrightarrow\) x\(\ne\)0,x\(\ne\)3

b/ \(\dfrac{x^2-6x+9}{x^2-3x}=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\)

c/ x= 5 => \(\dfrac{x-3}{x}=\dfrac{5-3}{5}=\dfrac{2}{5}\)

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
KD
Xem chi tiết
NB
Xem chi tiết
DN
Xem chi tiết
NQ
Xem chi tiết
KD
Xem chi tiết
NH
Xem chi tiết
Xem chi tiết
NT
Xem chi tiết