KT

cho phân thức:  \(\dfrac{x^2-4x+4}{x^2-4}\)

a, Với giá trị nào của x thì giá trị của phân thức xác định

b, Hãy rút gọn phân thức

c, Tính giá trị của phân thức tại |x|=3

d, Tìm giá trị của x để giá trị của phân thức bằng 2

H24
9 tháng 6 2021 lúc 8:20

`a)ĐK:x^2-4 ne 0<=>x^2 ne 4`
`<=>x ne 2,x ne -2`
`b)A=(x^2-4x+4)/(x^2-4)`
`=(x-2)^2/((x-2)(x+2))`
`=(x-2)/(x+2)`
`c)|x|=3`
`<=>`  \(\left[ \begin{array}{l}x=3\\x=-3\end{array} \right.\) 
`<=>`  \(\left[ \begin{array}{l}A=\dfrac{3-2}{3+2}=\dfrac15\\x=\dfrac{-3-2}{-3+2}=5\end{array} \right.\) 
`d)A=2`
`=>x-2=2(x+2)`
`<=>x-2=2x+4`
`<=>x=-6`

Bình luận (1)
LA
9 tháng 6 2021 lúc 8:21

a, ĐKXĐ: \(x^2-4\ne0\Leftrightarrow x\ne\pm2\)

b, Ta có: \(\dfrac{x^2-4x+4}{x^2-4}=\dfrac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-2}{x+2}\) (*)

c, \(\left|x\right|=3\Rightarrow x=\pm3\)

_ Thay x = 3 vào (*), ta được: \(\dfrac{3-2}{3+2}=\dfrac{1}{5}\)

_ Thay x = -3 vào (*), ta được: \(\dfrac{-3-2}{-3+2}=5\)

d, Có: \(\dfrac{x-2}{x+2}=2\)

\(\Leftrightarrow x-2=2\left(x+2\right)\)

\(\Leftrightarrow x-2=2x+4\)

\(\Leftrightarrow x=-6\left(tm\right)\)

Vậy...

Bình luận (1)

Các câu hỏi tương tự
KT
Xem chi tiết
KT
Xem chi tiết
KT
Xem chi tiết
KT
Xem chi tiết
KT
Xem chi tiết
KT
Xem chi tiết
LC
Xem chi tiết
KT
Xem chi tiết
KT
Xem chi tiết