Lời giải:
PT hoành độ giao điểm:
$x^2-(2x+2m-1)=0$
$\Leftrightarrow x^2-2x+(1-2m)=0(*)$
Để $(P)$ và $(d)$ cắt nhau tại 2 điểm pb có hoành độ $x_1,x_2$ thì pt $(*)$ có 2 nghiệm pb $x_1,x_2$
Điều này xảy ra khi $\Delta'=1-(1-2m)=2m>0\Leftrightarrow m>0$
Theo định lý Viet:
$x_1+x_2=2$
$x_1x_2=1-2m$
Khi đó:
$x_2^2(x_1^2-1)+x_1^2(x_2^2-1)=8$
$\Leftrightarrow 2(x_1x_2)^2-(x_1^2+x_2^2)=8$
$\Leftrightarrow 2(x_1x_2)^2-[(x_1+x_2)^2-2x_1x_2]=8$
$\Leftrightarrow 2(1-2m)^2-[2^2-2(1-2m)]=8$
$\Leftrightarrow 8m^2-12m=8$
$\Leftrightarrow 2m^2-3m-2=0$
$\Leftrightarrow (m-2)(2m+1)=0$
$\Leftrightarrow m=2$ hoặc $m=\frac{-1}{2}$
Vì $m>0$ nên $m=2$