H24

Cho (P): y =\(x^2\)

(d): y = 2x + 2m - 1

Tìm các giá trị của m để (P) và (d) cắt nhau tại 2 điểm phân biết có hoành độ \(x_1\)\(x_2\). thỏa mãn: \(x_2^2\left(x_1^2-1\right)+x_1^2\left(x^2_2-1\right)=8\)

AH
27 tháng 4 2023 lúc 18:57

Lời giải:

PT hoành độ giao điểm:

$x^2-(2x+2m-1)=0$

$\Leftrightarrow x^2-2x+(1-2m)=0(*)$

Để $(P)$ và $(d)$ cắt nhau tại 2 điểm pb có hoành độ $x_1,x_2$ thì pt $(*)$ có 2 nghiệm pb $x_1,x_2$

Điều này xảy ra khi $\Delta'=1-(1-2m)=2m>0\Leftrightarrow m>0$

Theo định lý Viet:

$x_1+x_2=2$

$x_1x_2=1-2m$

Khi đó:

$x_2^2(x_1^2-1)+x_1^2(x_2^2-1)=8$

$\Leftrightarrow 2(x_1x_2)^2-(x_1^2+x_2^2)=8$

$\Leftrightarrow 2(x_1x_2)^2-[(x_1+x_2)^2-2x_1x_2]=8$

$\Leftrightarrow 2(1-2m)^2-[2^2-2(1-2m)]=8$

$\Leftrightarrow 8m^2-12m=8$

$\Leftrightarrow 2m^2-3m-2=0$

$\Leftrightarrow (m-2)(2m+1)=0$

$\Leftrightarrow m=2$ hoặc $m=\frac{-1}{2}$

Vì $m>0$ nên $m=2$

Bình luận (0)

Các câu hỏi tương tự
NV
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
BH
Xem chi tiết
NM
Xem chi tiết
QT
Xem chi tiết
HL
Xem chi tiết
VT
Xem chi tiết