LN

Cho (P) / (y ^ 2) = x và 2 điểm A(1;-1),B(9;3) . Gọi M là một điểm thuộc cung AB của (P) phần của (P) bị chắn bởi dây AB . Xác định vị trí của M trên cung AB sao cho diện tích tam giác MAB lớn nhất.

NL
26 tháng 3 2022 lúc 14:45

Gọi \(M\left(m^2;m\right)\) với \(-1< m< 3\)

\(\Rightarrow S_{MAB}=\dfrac{1}{2}\left|\left(x_M-x_A\right)\left(y_B-y_A\right)-\left(x_B-x_A\right)\left(y_M-y_A\right)\right|\)

\(=\dfrac{1}{2}\left|4\left(m^2-1\right)-8\left(m+1\right)\right|=2\left|m^2-2m-3\right|\)

Do \(m^2-2m-3< 0;\forall m\in\left(-1;3\right)\)

\(\Rightarrow S=-2\left(m^2-2m-3\right)=8-2\left(m-1\right)^2\le8\)

Dấu "=" xảy ra khi \(m=1\) hay \(M\left(1;1\right)\)

Bình luận (0)

Các câu hỏi tương tự
LN
Xem chi tiết
H24
Xem chi tiết
VD
Xem chi tiết
PB
Xem chi tiết
CV
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
NL
Xem chi tiết