Bài 8: Rút gọn biểu thức chứa căn bậc hai

TD

cho p = \(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)

a, rút gọn p

b, tìm GTNN của 1/p

NT
12 tháng 9 2018 lúc 21:16

a, \(P=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\) (ĐK: \(x\ge0,x\ne4,x\ne9\))

\(=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

b, ĐK: \(x\ge0,x\ne4,x\ne9\)

\(\dfrac{1}{P}=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1-4}{\sqrt{x}+1}=1-\dfrac{4}{\sqrt{x}+1}\)

Ta có: \(x\ge0\forall x\in TXĐ\Leftrightarrow\sqrt{x}\ge0\)\(\Leftrightarrow\sqrt{x}+1\ge1\Leftrightarrow\dfrac{1}{\sqrt{x}+1}\le1\Leftrightarrow\dfrac{4}{\sqrt{x}+1}\le4\)\(\Leftrightarrow-\dfrac{4}{\sqrt{x}+1}\ge-4\Leftrightarrow1-\dfrac{4}{\sqrt{x}+1}\ge-3\)

Dấu bằng xảy ra \(\Leftrightarrow\sqrt{x}+1=1\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\left(TM\right)\)

Vậy GTNN của \(\dfrac{1}{P}=-3\Leftrightarrow x=0\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NM
Xem chi tiết
KT
Xem chi tiết
H24
Xem chi tiết
PN
Xem chi tiết
NH
Xem chi tiết
TN
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết