Cho (O), bán kính R và 1 điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm), tia Mx nằm giữa MA và MO, cắt (O) tại 2 điểm C và D (C nằm giữa M và D). Gọi I là trung điểm của dây CD, kẻ AH ⊥ MO tại H.
a) Tính ∠MAO
b) Tính OH.OM theo R
c) C/m: M,A,I,O thuộc 1 đường tròn
d) Gọi K là giao điểm của OI và HA. Chứng minh KC là tiếp tuyến của đường tròn (O), bán kính R
Mn giúp mik với ạ, mai mình nộp bài rồi
Cho đường tròn (O;R) và điểm M ở ngoài (O). Vẽ cát tuyến MAB (A,B thuộc O)) và nằm giữa M VÀ B). Tiếp tuyến A và B cắt nhau tại C. vẽ CH vuông góc với OM tại H, CH cắt AB tại N
a) cm: 5 điểm B,O,H,A,C cùng thuộc 1 đg tròn
b) OC cắt AB tại T. cm: OH.OM=OT.OC
c)CH cắt (O) theo thứ tự tại E vs F. cm: ME, MF là tiếp tuyến của (O)
d)cm: MA.MB=MN.MT
e) đg thẳng vuông góc với O cắt tại S, tính diên tích tam giác MOS nếu biết OH=R/2
cho điểm a nằm ngoài đường tròn (o;r) . kẻ tiếp tuyến ab (b là tiếp điểm ) . qua b kẻ bh vuông góc ao (h thuộc ao) và cắt (O) tại P
a) oa.oh có giá trị ko đổi
b) AD là tiếp tuyến (O)
c) KẺ AO cắt (O) tại M,N (M giữa A,N) . cm: AM là phân giác của góc ABP
cho đường tròn tâm O bán kính R và điểm S nằm ngoài đờng tròn. từ S kẻ các tiếp tuyến SA, SB( A, B là các tiếp điểm ) kẻ đường kính AC của đường tròn (O). tiếp tuyến tại C cắt AB tại E.
Cm: OE vuống góc với SC
Vẽ hình thôi ạ
Cho đường tròn tâm O bán kính R và một điểm A nằm ngòi đường tròn . qua a kẻ tiếp tuyến AB với đường tròn (B là tiếp điểm) . tia Ax nằm giữa A,B và AO cắt đường tròn (O;R) tại hai điểm C và D( C nằm giữa A và D) . gọi M là trung điểm của dây CD , kẻ BH vuông góc với AO tại H . a,Tính OH. OA theo R .b, Chứng minh bốn điểm A,B,M,O cùng thuộc một đường tròn . c,Gọi E là giao của OM với HB . Chứng minh ED là tiếp tuyến của đường tròn
Cho đường tròn (O,R) .từ điểm A nằm ngoài đường tròn kẻ hai tiếp tuyến AB và AC với đường tròn (B,C là tiếp điểm).AO cắt BC tại H a)cm 4 điểm A,B,O,C cùng thuộc đường tròn b) cm OA vuông góc BC tại H c) cho OA=2R .tính chu vi tam giác ABC theo R d) vẽ cát tuyến AMN với đường tròn.xác định vị trí của cát tuyến AMN sao cho nhỏ nhất .
cho điểm m nằm ngoài đường tròn (O;R).Kẻ các tiếp tuyến MA,MB với đường tròn (O) (A,B là các tiếp điểm ).Vẽ đường kính AD của đường tròn(O).Gọi H là giao điểm của MO và AB.
a/Chứng minh rằng :MO vuông góc AB tại H
b/Cho biết R = 15 cm và MO = 25 cm .Tính độ dài đoạn OH.
c/ Gọi G là giao điểm của BD và AM .Chứng minh :AM = MG.
d/ Gọi I là giao điểm của tia OM và đường tròn (O). Chứng minh I là tâm đường tròn nội tiếp tam giác MAB . Tính độ dài đoạn thẳng BD theo R ,r với r là bán kính của đường tròn nội tiếp tam giác MAB.
Cho nửa đường tròn (O;R) đường kính AB. Vẽ 2 tiếp tuyến Ax, By với nửa đường tròn đó. Trên tia Ax lấy điểm M sáo cho AM>R. từ M kẻ tiếp tuyến MC với nửa đường tròn (O) (C là tiếp điểm). Tia MC cắt By tại D
a, CM: MD=MA+BD và tam giác OMD vuông
b, Cho AM=2R Tính BD và chu vi tứ giác ABDM
c, Tia AC cắt tia By tại K. Chứng minh OK vuông góc với BM
Cho đường tròn (O) và điểm M nằm ngoài đường tròn. Qua M kẻ các tiếp tuyến MA, MB tới đường tròn(O) với A,B là các tiếp điểm.
a) Cm 4 điểm A,B,M,O cùng thuộc 1 đường tròn
b) Kẻ đường kính AC của đường tròn (O). Cm: OM//CB
c) Vẽ BK vuống góc với AC tại K. Chứng minh CK.OM=OB.CB
d) Tiếp tuyến tại C của đường tròn(O) cắt AB tại D. Cm OD vuống góc với CM