RH

Cho (O) có dây AB khác đường kính . Qua O kẻ đường vuông góc với AB tại H và cắt tiếp tuyến tại A của đường tròn ở điểm M.

a) Chứng minh : H là trung điểm của đoạn AB và MB là tiếp tuyến của (O) tại B

b) Vẽ dây AC của (O) sao cho AC//OM . Chứng minh : 3 điểm B,O,D thẳng hàng 
c) Gọi D và I lần lượt là giao điểm của MC với (O) và AB. Chứng minh : góc OHC = góc MHD và ID . HC = IC . HD

NT
8 tháng 12 2023 lúc 13:10

a: Ta có: ΔOAB cân tại O

mà OH là đường cao

nên H là trung điểm của AB và OH là phân giác của \(\widehat{AOB}\)

ta có: OH là phân giác của góc AOB

=>OM là phân giác của góc AOB

=>\(\widehat{AOM}=\widehat{BOM}\)

Xét ΔOAM và ΔOBM có

OA=OB

\(\widehat{AOM}=\widehat{BOM}\)

OM chung

Do đó: ΔOAM=ΔOBM

=>\(\widehat{OBM}=\widehat{OAM}\)

mà \(\widehat{OAM}=90^0\)

nên  \(\widehat{OBM}=90^0\)

=>MB là tiếp tuyến của (O)

b: Sửa đề: B,O,C thẳng hàng

Ta có: AB\(\perp\)OM

OM//AC

Do đó: AB\(\perp\)AC

=>ΔABC vuông tại A

Vì ΔABC vuông tại A

nên ΔABC nội tiếp đường tròn đường kính BC

mà ΔABC nội tiếp (O)

nên O là trung điểm của BC

=>B,O,C thẳng hàng

c: Xét (O) có

ΔDBC nội tiếp

BC là đường kính

Do đó: ΔDBC vuông tại D

=>BD\(\perp\)DC tại D

=>BD\(\perp\)CM tại D

Xét ΔBCM vuông tại B có BD là đường cao

nên \(MD\cdot MC=MB^2\)(1)

Xét ΔBOM vuông tại B có BH là đường cao

nên \(MH\cdot MO=MB^2\left(2\right)\)

Từ (1) và (2) suy ra \(MD\cdot MC=MH\cdot MO\)

=>\(\dfrac{MD}{MO}=\dfrac{MH}{MC}\)

Xét ΔMDH và ΔMOC có

\(\dfrac{MD}{MO}=\dfrac{MH}{MC}\)

\(\widehat{DMH}\) chung

Do đó: ΔMDH đồng dạng với ΔMOC

=>\(\widehat{MHD}=\widehat{MCO}\)

=>\(\widehat{MHD}=\widehat{OCD}\)

mà \(\widehat{OCD}=\widehat{ODC}\)(ΔOCD cân tại O)

nên \(\widehat{MHD}=\widehat{ODC}\left(3\right)\)

Ta có: \(\widehat{MHD}=\widehat{MCO}\)

mà \(\widehat{MHD}+\widehat{OHD}=180^0\)(hai góc kề bù)

nên \(\widehat{MCO}+\widehat{OHD}=180^0\)

=>\(\widehat{OCD}+\widehat{OHD}=180^0\)

=>OHDC là tứ giác nội tiếp

=>\(\widehat{OHC}=\widehat{ODC}\left(4\right)\)

Từ (3) và (4) suy ra \(\widehat{OHC}=\widehat{MHD}\)

Bình luận (0)

Các câu hỏi tương tự
LK
Xem chi tiết
PH
Xem chi tiết
TL
Xem chi tiết
PB
Xem chi tiết
HL
Xem chi tiết
TM
Xem chi tiết
PN
Xem chi tiết
TN
Xem chi tiết
DS
Xem chi tiết