MB

 cho nửa (O), đường kính AB. C là điểm chuyển động trên nửa đường tròn đó. Vẽ hình vuông BCDE ra phía ngoài đường tròn

a) c/m A,C,D thẳng hàng (đã c/m)

b)Khi C chuyển động D chạy trên đường nào?

c) c/m CE luôn đi qua 1 điểm I cố định

d) E chạy trên đừng nào?

e) Tâm hình vuông trện chạy trên đường nào?

NL
24 tháng 1 2024 lúc 0:25

b.

Gọi I là điểm chính giữa cung AB \(\Rightarrow I\) cố định

Đồng thời ta có \(IA=IB\Rightarrow\Delta IAB\) vuông cân tại I

\(\Rightarrow\widehat{BAI}=45^0\)

Qua B kẻ đường thẳng vuông góc AB cắt AI kéo dài tại F \(\Rightarrow F\) cố định

Tam giác ABF vuông cân tại B (tam giác vuông có 1 góc \(\widehat{BAI}=45^0\)

\(\Rightarrow\widehat{AFB}=45^0\)

Đồng thời suy ra 3 điểm A,B,F thuộc đường tròn tâm I bán kính AI cố định.

\(BCDE\) là hình vuông \(\Rightarrow\widehat{CDB}=45^0\Rightarrow\widehat{AFB}=\widehat{ADB}=45^0\)

Lại có F, D nằm cùng 1 phía nửa mặt phẳng bờ AB

\(\Rightarrow AFDB\) nội tiếp (2 góc bằng nhau cùng chắn AB)

\(\Rightarrow D\) thuộc đường tròn (I;IA) cố định khi C di động

c.

Do F thuộc (I;IA) \(\Rightarrow IB=ID\Rightarrow I\) thuộc trung trực của BD

Mà ABCD là hình vuông \(\Rightarrow AC\) là trung trực của BD

\(\Rightarrow I\in AC\)

Vậy CE luôn đi qua điểm I cố định

d.

\(\widehat{CEB}=45^0\) (BCDE là hình vuông), mà I, C, E thẳng hàng theo cmt

\(\Rightarrow\widehat{IEB}=\widehat{IFB}=45^0\)

Lại có E, F nằm cùng phía nửa mặt phẳng bờ IB

\(\Rightarrow EBIF\) nội tiếp

\(\Rightarrow E\) thuộc đường tròn ngoại tiếp tam giác IBF cố định

e.

Gọi G là tâm hình vuông \(\Rightarrow BD\) và CE vuông góc nhau tại G

\(\Rightarrow\widehat{CGB}=90^0\)

Do I, C, E thẳng hàng \(\Rightarrow\widehat{IGB}=90^0\)

\(\Rightarrow G\) thuộc đường tròn đường kính IB cố định

Bình luận (0)
NL
24 tháng 1 2024 lúc 0:26

loading...

Bình luận (1)

Các câu hỏi tương tự
PA
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
LV
Xem chi tiết
HV
Xem chi tiết
TB
Xem chi tiết
CD
Xem chi tiết
PM
Xem chi tiết
TU
Xem chi tiết