H24

Cho nửa đường tròn tâm O, đường kính AB. Kẽ các tiếp tuyến Ax, By cùng phía với nửa đường
tròn đối với AB. Từ điểm M trên nửa đường tròn kẽ tiếp tuyến thứ ba với đường tròn, nó cắt Ax và By lần
lượt tại C và D.
a/ Chứng minh: Tam giác COD là tam giác vuông.
b/ Chứng minh: MC.MD=\(OM^2\).
c/ Cho biết OC=BA=2R, tính AC và BD theo R.

NT
26 tháng 8 2021 lúc 22:26

1: Xét (O) có 

CM là tiếp tuyến có M là tiếp điểm

CA là tiếp tuyến có A là tiếp điểm

Do đó: OC là tia phân giác của \(\widehat{MOA}\)

Xét (O) có

DM là tiếp tuyến có M là tiếp điểm

DB là tiếp tuyến có B là tiếp điểm

Do đó: OD là tia phân giác của \(\widehat{MOB}\)

Ta có: \(\widehat{MOA}+\widehat{MOB}=180^0\)

\(\Leftrightarrow2\cdot\left(\widehat{COM}+\widehat{DOM}\right)=180^0\)

\(\Leftrightarrow\widehat{COD}=90^0\)

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
MP
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
HT
Xem chi tiết
PB
Xem chi tiết
NK
Xem chi tiết
TL
Xem chi tiết
H24
Xem chi tiết