TL

Cho nửa đường tròn (O; R), đường kính AB. Trên nửa mặt phẳng bờ AB chứa nửa đường tròn (O), vẽ tiếp tuyến Ax với nửa đường tròn. Lấy điểm C trên tia Ax( C khác A), đường thẳng BC cắt nửa đường tròn (O) tại điểm D. Kẻ AH vuông góc với OC tại H, đường thẳng DH cắt AB ở E.
a, Chứng minh tứ giác AHDC nội tiếp 
b, Chứng minh EH.ED=EO.EB

NM
10 tháng 5 2022 lúc 7:43

A B C D H E O

a/ Nối A với D ta có

\(\widehat{ADB}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow AD\perp BC\)

=> H và D cùng nhìn AC dưới 1 góc vuông => AHDC là tứ giác nội tiếp

b/ 

Xét tg vuông ACO có

\(\widehat{ACO}+\widehat{AOC}=90^o\)

Ta có \(\widehat{ADH}+\widehat{EDB}=\widehat{ADB}=90^o\)

Xét tứ giác nội tiếp AHDC có

 \(\widehat{ACO}=\widehat{ADH}\) (Góc nội tiếp cùng chắn cung AH)

\(\Rightarrow\widehat{AOC}=\widehat{EDB}\)

Xét tam giác EOH và tg EBD có

\(\widehat{BED}\) chung

\(\widehat{AOC}=\widehat{EDB}\)

=> tg EOH đồng dạng với tg EDB (g.g.g)

\(\Rightarrow\dfrac{EH}{EB}=\dfrac{EO}{ED}\Rightarrow EH.ED=EO.EB\)

 

 

 

Bình luận (0)
MH
10 tháng 5 2022 lúc 9:50

a) Ta có \(\widehat{ADB}=90^0\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow\widehat{ADC}=90^0\)

Tứ giác \(AHDC\) có: \(\widehat{ADC}=\widehat{AHC}=90^0\) mà 2 góc này nội tiếp và chắn cung AC

\(\Rightarrow AHDC\) là tứ giác nội tiếp

b) Tứ giác \(AHDC\) nội tiếp \(\Rightarrow\widehat{ACO}=\widehat{ADE}\) (góc nội tiếp cùng chắn 1 cung)

Ta có: \(\widehat{EOH}=90^0-\widehat{ACO}=90^0-\widehat{ADE}=\widehat{EDB}\)

Xét \(\Delta EOH\) và \(\Delta EDB\) có:

\(\widehat{BED}\) chung

\(\widehat{EOH}=\widehat{EDB}\) (đã chứng minh)

\(\Rightarrow\Delta EOH\sim\Delta EDB\) (g.g) \(\Rightarrow\dfrac{EO}{EH}=\dfrac{ED}{EB}\Rightarrow EH.ED=EO.EB\)

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
MM
Xem chi tiết
H24
Xem chi tiết
S7
Xem chi tiết
CT
Xem chi tiết
NT
Xem chi tiết
TA
Xem chi tiết
HA
Xem chi tiết
H24
Xem chi tiết