DT

Cho nửa đường tròn (O) đường kính AB = 2R. Kẻ các tiếp tuyến Ax, By với (O) (Ax, By nằm cùng phía đối với nửa đường tròn (O)). Gọi M là 1 điểm trên đường tròn (M khác A và B). Tiếp tuyến tại M của nửa đường tròn cắt Ax, By thứ tự ở C và D. Chứng minh rằng: 1) Chứng minh Góc COD bằng 90° 2) Chứng minh 4 điểm B, D, M, O thuộc 1 đường tròn 3) Chứng minh CD = AC + BD 4) Chứng minh Tích AC.BD không đổi khi M chuyển động trên nửa đường tròn (O) 5) Chứng minh AB là tiếp tuyến đường tròn đường kính CD 6) Gọi N là giao điểm của AD và BC. Chứng minh: MN // AC

NT
19 tháng 12 2021 lúc 20:01

2: Xét tứ giác BDMO có 

\(\widehat{DBO}+\widehat{DMO}=180^0\)

Do đó: BDMO là tứ giác nội tiếp

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
NP
Xem chi tiết
HV
Xem chi tiết
NP
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
TB
Xem chi tiết