Giả sử n^2+m=a^2
Vì m là ước dương của 2n^2 nên 2n^2=mk ( k∈N )
Suy ra n^2+m=n^2+(2n^2)/k=a^2
⇔n^2.k^2+2n^2.k=a^2.k^2
Suy ra :
k^2+2k=(ak/n)^2à số chính phương.
Suy ra Vô lý vì k^2<k^2+2k<(k+1)^2
^ là mũ;/là phân số; . là nhân
chúc bạn học tốt
Giả sử n^2+m=a^2
Vì m là ước dương của 2n^2 nên 2n^2=mk ( k∈N )
Suy ra n^2+m=n^2+(2n^2)/k=a^2
⇔n^2.k^2+2n^2.k=a^2.k^2
Suy ra :
k^2+2k=(ak/n)^2à số chính phương.
Suy ra Vô lý vì k^2<k^2+2k<(k+1)^2
^ là mũ;/là phân số; . là nhân
chúc bạn học tốt
Cho n nguyên dương, m là ước nguyên dương của \(2n^2\). Chứng minh m+\(n^2\) không là số chính phương
cho n là số nguyên dương và d là một ước nguyện đường của 2n2 chứng minh rằng n2+ d không phải là số chính phương
cho n là số nguyên dương và d là một ước lớn hơn 0 của 2n2 . chứng minh rằng n2 + d không phải là số chính phương
Cho \(n\in N,n>0\) d là ước nguyên dương của \(2n^2\). Chứng minh \(n^2+d\)không là số chính phương
Cho n là số nguyên dương và m là ước nguyên của 2n2 . CMR: n2 + m ko là số chính phương
Thầy giáo mik gợi ý là chứng minh phản chứng . Giúp mik ak !
Cho n số nguyên dương. Gọi k(1), k(2),...k(i) là ước nguyên dương của n.Giả sử k(1)+k(2)+...+k(i)+i=2n+1
CMR: n/2 là sô chính phương
Cho \(m^2+4\)và \(m^2+16\)là các số nguyên tố với m là số nguyên dương lớn hơn 1. Chứng minh rằng m chia hết cho 5
Đây là bài 2a của Đề Thi HSG Toán 9 Huyện Tân Kỳ năm 2019-2020 . Mong các bạn giải giúp . Có đáp án cả đề càng tốt kkkkkk
Cho n là số tự nhiên khác 0, a là ước nguyên dương của . Chứng minh rằng n^2+a không thể là số chính phương.
1.nếu n là số nguyên dương sao cho 2n có 28 ước số dương và 3n có 30 ước số dương. Thì số 6n có bao nhiêu ước số dương 2.cho biểu thức (2x+1/x^2)^n với n là số nguyên dương a) tìm n để số hạng thứ 3 trong triển khai theo số mũ giảm dần của 2x( của biểu thức trên) không chữa x và tính số hạng ấy b) với giá trị nào của x thì số hạng tìm được ở câu a) bằng số hạng thứ 2 trong triển khai theo số mũ giảm dần của x^3 của biểu thức ( 1+x^3)^30