Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

BM

Cho n là số nguyên dương. Chứng minh A= 23n+1 +23n-1 +1 là hợp số

AK
13 tháng 1 2019 lúc 11:51

Sử dụng phương pháp quy nạp 

Bình luận (0)
BM
13 tháng 1 2019 lúc 23:16

Dùng sao hả bạn,giúp mk vói😢

Bình luận (0)
TT
9 tháng 2 2020 lúc 11:45

Ta thấy : \(n\inℤ^+\Rightarrow n=k+1\left(k\inℕ\right)\)

Khi đó : \(A=2^{3\left(k+1\right)+1}+2^{3\left(k+1\right)-1}+1\)

\(=2^{3k+4}+2^{3k+2}+1\)

\(=8^k.16+8^k.4+1\equiv1.2+1.4+1\equiv0\left(mod7\right)\)

Do vậy : \(A⋮7\) mà \(A>7\forall n\inℤ^+\)

\(\Rightarrow\)\(A=2^{3n+1}+2^{3n-1}+1\) là hợp số (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NH
Xem chi tiết
TH
Xem chi tiết
DT
Xem chi tiết
NH
Xem chi tiết
LN
Xem chi tiết
VT
Xem chi tiết
LS
Xem chi tiết
NT
Xem chi tiết
LH
Xem chi tiết