Violympic toán 9

HH

Cho n € N. CMR:

1) Nếu n không chia hết cho 7 thì n^3+1 chia hết cho 7 hoặc n^3-1 chia hết cho 7

2) n(n^2-1)(3n+3) chia hết cho 12

3) n(n+1)(2n+1) chia hết cho 6

VH
7 tháng 7 2019 lúc 20:20

1) Đặt A = n6 - 1 = ( n3 - 1)( n3 + 1) = ( n - 1)( n2 + n + 1)( n +1)(n2 - n + 1)

Nếu n không chia hết cho 7 thì:

Xét nếu n = 7k + 1 thì n - 1 = 7k + 1 - 1 = 7k chia hết cho 7 nên A chia hết cho 7

Nếu n = 7k + 2 thì n2 + n + 1 = (7k + 2)2 + 7k + 2 + 1 = 7(7k2 +3k+1) chia hết cho 7 nên A chia hết cho 7

Tương tự đến trường hợp n = 7k + 6

=> Nếu n không chia hết cho 7 thì n6 - 1 chia hết cho 7

Mà n6 - 1 = (n3 - 1)(n3 + 1)

Do đó: n3 - 1 chia hết cho 7 hoặc n3 - 1 chia hết cho 7

Bình luận (0)
VH
7 tháng 7 2019 lúc 20:28

3) n(n + 1)(2n + 1)

= n(n + 1)[(n + 2) + (n - 1)]

= n(n + 1)(n + 2) + n(n + 1)(n - 1)

Vì n(n + 1)(n + 2) là tích của ba số tự nhiên liên tiếp

Nên n(n + 1)(n + 2) chia hết cho 6 (1)

Vì n(n + 1)(n - 1) là tích của 3 số tự nhiên liên tiếp

Nên n(n + 1)(n - 1) chia hết cho 6 (2)

Từ (1), (2) => Đpcm

Bình luận (0)
H24
8 tháng 7 2019 lúc 15:52

2)Đề sai. Sửa:

\(n\left(n^2-1\right)\left(3n+6\right)\)\(=3n\left(n-1\right)\left(n+1\right)\left(n+2\right)\)

Theo nguyên lí Dirichle, chắc chắn có 1 số chia hết cho 4.

\(\Rightarrow3n\left(n-1\right)\left(n+1\right)\left(n+2\right)⋮3⋮4=12\)

Vậy ....

Bình luận (1)

Các câu hỏi tương tự
DA
Xem chi tiết
CL
Xem chi tiết
H24
Xem chi tiết
US
Xem chi tiết
VQ
Xem chi tiết
AJ
Xem chi tiết
PQ
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết