Violympic toán 9

VT

Tìm giá trị của các số nguyên dương x, y và z sao cho \(\left\{{}\begin{matrix}\frac{2x^2}{1+x^2}=y\\\frac{2y^2}{1+y^2}=z\\\frac{2z^2}{1+z^2}=x\end{matrix}\right.\).

NL
11 tháng 6 2019 lúc 22:25

Ta có \(1+x^2\ge2x\Rightarrow y=\frac{2x^2}{1+x^2}\le\frac{2x^2}{2x}=x\Rightarrow y\le x\)

Tương tự: \(\frac{2y^2}{1+y^2}=z\Rightarrow z\le y\); \(\frac{2z^2}{1+z^2}=x\Rightarrow x\le z\)

\(\Rightarrow\left\{{}\begin{matrix}y\le x\\x\le z\\z\le y\end{matrix}\right.\) \(\Rightarrow x=y=z\)

Thay vào pt đầu: \(\frac{2x^2}{1+x^2}=x\Leftrightarrow\left[{}\begin{matrix}x=0\\\frac{2x}{1+x^2}=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=1\end{matrix}\right.\)

Vậy \(x=y=z=1\)

Bình luận (0)

Các câu hỏi tương tự
BL
Xem chi tiết
TP
Xem chi tiết
BL
Xem chi tiết
BL
Xem chi tiết
KA
Xem chi tiết
BL
Xem chi tiết
KA
Xem chi tiết
KS
Xem chi tiết
BL
Xem chi tiết